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Supplementary Figure 1: Process flow schematics of key steps for capacitively-shunted flux qubit fabrication. a,
Preparation of MBE aluminum (red) on outgassed C-plane sapphire substrates (gray). b, Patterning of the MBE aluminum
into the shunt capacitor (representative square shunt capacitor geometry is shown), resonator center line, and surrounding
ground plane. c, Patterning of the aluminum qubit loop (yellow), which contains three aluminum Josephson junctions. The
loop contacts the shunt capacitor as illustrated.
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Supplementary Figure 2: Experimental measurement schematic. a. Diagram of the input-signal generation of readout (top
panel, cyan), qubit drive (mid panel, magenta) and noise (bottom panel, brown) at room temperature. The signals are combined
before being sent to the fridge. b. Relative timing of the signals generated in a. The dashed lines indicate the window within
which the readout pulse is turned on while the noise is turned off. The representative qubit drive is a spin-echo pulse sequence,
two π/2-pulses and a midpoint π-pulse. The actual pulses assume a Gaussian envelope. c. Wiring inside the refrigerator.
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Supplementary Figure 3: Circuit diagram of the C-shunt flux qubit. Josephson junction 3 is α times the size of junctions 1
and 2. The external flux fe is defined as the magnetic flux threading the loop formed by the three junctions. Nodes A and B
represent the superconducting islands. The shunt capacitor has the dominant capacitance in the circuit. Node A is also
capacitively coupled to a superconducting resonator (not drawn). The green dashed box highlights the part of the circuit
resembling the conventional persistent-current flux qubit.
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Supplementary Figure 4: Potential profile of the C-shunt flux qubit. a. A contour plot of the potential energy U(ϕ1, ϕ2) at
fb = 0 for α = 0.4 (C-shunt flux qubit, on the left) and α = 0.8 (traditional flux qubit, on the right). In the C-shunt case, the
square-shaped area centered around (ϕ1, ϕ2) = (k1 ·2π, k2 ·2π) marks the single well. In the traditional case, the
figure-eight-shaped area marks the double well. The gray arrow indicates the ϕm = ϕ1 − ϕ2 direction. b. The potential
function along the ϕm direction at ϕ1 + ϕ2 = 0 at fb = 0 and fb = 0.03 for both α = 0.4 and α = 0.8 cases.
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Supplementary Figure 5: Circuit schematic for the C-shunt flux qubit and its reduction for use in simulation. a.
Schematic of the qubit-resonator system and the islands / nodes used in the simulation. For clarity the labeling follows that
used for cQED transmons in Ref.1. b. Equivalent circuit schematic with islands 1 and 5 grounded. Filled black circles
indicate the five nodes that will be used in the full simulation. c. First reduction of the circuit in (b) containing four nodes
(labeled in blue). See text for details. d. Second reduction of the circuit in (b) containing three nodes (labeled in blue). An
effective shunt capacitance Csh accounts for the capacitances CT, CB and Ca. See text for details.
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Supplementary Figure 6: High-power spectra of qubits A and B with simulations to match the higher-level transitions.
The horizontal axis corresponds to the current in the “bobbin” coil of wire local to the qubits to apply a magnetic flux bias.
Solid lines are simulation results that give the best match to the visible 0−1, 0−2 (two photon), 1−2, 0−3 (two photon) and 0−2
transitions. A precise matching to the experimental spectra required allowing these parameters to vary somewhat from their
design values (Supplementary Table 1). Nonetheless, the simulation parameters (e.g., Jc, Csh, etc.) are generally same for the
two qubits, with the primary exception being the junction sizes.
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Supplementary Figure 7: Two-tone spectroscopy of qubit B measured at the optimal bias point (Φe = Φ0/2). The data
are taken by first applying a 20 ns microwave pulse at ω/2π = ω01/2π = 4.701 GHz to drive the qubit to the |1〉 state,
followed by a long (50µs) low-power microwave tone. The frequency of the second tone is swept to perform spectroscopy.
The resulting spectrum shows two peaks, one at 4.701 GHz that corresponds to driving the 1−0 transition, and one at
5.191 GHz that corresponds to the 1−2 transition. The measured anharmonicity is (ω12 − ω01)/2π = 490 MHz.
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Supplementary Figure 8: Circuit schematic used to account for electric and magnetic noise coupled to the qubit. See
main text Supplementary Note Supplementary Note 8 for details.
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Supplementary Figure 9: Spin locking and its implementation for noise spectroscopy. a. Analogy between free- (left) and
driven-evolution (right) dynamics. The free evolution is described in the qubit frame {x, y, z} while the driven evolution is
described in the rotating frame {X,Y,Z}. The two cases differ in the orientation and size of the static field, i.e., “ωqσz/2

′′

(red arrow) versus “ωRσX/2
′′ (yellow arrow). The corresponding quantization axes (green arrows) and

longitudinal/transverse relaxations (gray arrows) are defined with respect to the static field. b. Standard three-pulse
spin-locking sequence (SL-3). The long driving pulse is 90◦-phase-shifted from the π/2-pulses, and its length τ is the scanned
parameter to record the rotating-frame relaxation. c. Bloch sphere representation of the rotating-frame qubit dynamics under
SL-3. The purple arrows represent the polarization of the qubit states, while the magenta arrows indicate the driving-field
orientation. The qubit is initially prepared in its ground state (I). The first π/2-pulse rotates the qubit by 90◦ into the
equatorial plane (II). The second 90◦-phase-shifted continuous driving pulse, of duration τ , is then aligned with the qubit
state, effectively locking the qubit along X. During the pulse, the qubit undergoes relaxation in this rotating frame towards its
steady state (III). The final π/2-pulse projects the remaining polarization onto Z (=z) for readout (IV).
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Supplementary Figure 10: Comparison of a model using ohmic charge noise with one using ohmic flux noise. Panels a, c,
and e reproduce the panels in Fig. 3 from the main text, and the simulation traces contained therein are derived from a model
involving ohmic charge noise, 1/f flux noise and the Purcell effect. For comparison, panels b, d, and f replace the ohmic
charge noise with ohmic flux noise. The agreement with the data is similar between the two models, making it challenging to
distinguish between ohmic charge noise and ohmic flux noise. It is only in panels a and b (device C) at frequencies above 6
GHz where the qubit is especially sensitive to ohmic charge noise that a plausible distinction can be observed.
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Supplementary Figure 11: System filter functions corresponding to representative control sequences. Filter functions of
Ramsey, spin-echo and CPMG (N = 2, 4, 8, 16) sequences, assuming τ = 1µs in all cases.
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Sample Shunt-cap. and Coupling Junction Parameters Qubit Parameters at Φb = 0 Measured

main cap gap Csh βc α Jc EJα ECα ∆ A Veg Ip TΦ
1 TQ1 TP

1 T sim
1 Tmeas

1 ∆
# text type (µm) (fF) (µA/µm2) (GHz) (GHz) (GHz) (GHz) (µV) (nA) (µs) (µs) (µs) (µs) (µs) (GHz)
1 IDC 40 21.3 0.19 0.55 6.7 139 0.74 3.36 6.15 4.28 194 4.4 21 742 3.6 4.0 4.4
2 IDC 40 21.3 0.19 0.55 6.7 139 0.74 3.36 6.15 4.28 194 4.8 19 742 3.8 2.6 4.9
3 IDC 20 21.3 0.19 0.59 6.6 127 0.75 1.50 8.37 2.46 206 1.8 155 3014 1.8 1.6 1.8
4 IDC 20 17.5 0.19 0.63 6.6 137 0.88 0.88 11.65 1.66 275 0.5 821 2894 0.5 0.5 0.7
5 C IDC 40 9.0 0.31 0.68 6.6 133 1.46 0.82 17.8 1.76 275 0.5 685 2894 0.5 0.5 0.8
6 IDC 40 21.3 0.19 0.55 6.6 137 0.74 3.36 6.10 4.30 191 2.7 37 742 2.5 1.9 2.5
7 IDC 40 22.7 0.31 0.53 5.9 93.1 0.73 3.88 4.40 4.74 126 8.4 22 241 5.9 4.0 3.5
8 IDC 20 27.6 0.21 0.52 5.9 87.3 0.62 3.94 3.51 4.45 113 15 16 408 7.6 7.0 5.4
9 IDC 20 17.9 0.23 0.56 5.9 105 0.88 3.31 6.29 4.61 152 6.3 21 536 4.8 5.0 3.9
10 IDC 20 17.9 0.23 0.55 5.9 105 0.88 4.19 5.53 5.34 145 6.7 16 305 4.7 5.0 3.7
11 IDC 40 21.3 0.19 0.55 5.9 122 0.74 3.35 5.75 4.30 171 4.4 28 762 3.7 2.3 3.3
12 IDC 40 21.3 0.19 0.54 5.9 122 0.74 4.14 5.05 4.90 163 5.8 18 467 4.3 3.5 4.1
13 IDC 20 26.8 0.15 0.52 3.0 44.3 0.64 3.19 2.73 4.05 61.8 32 33 1378 16 12 3.2
14 IDC-R 10 51.4 0.14 0.43 2.4 36.2 0.35 3.94 0.88 3.43 43.9 82 34 643 23 23 4.2
15 IDC-R 10 51.4 0.14 0.43 2.4 36.2 0.35 3.94 0.88 3.43 43.9 82 34 643 23 22 4.2
16 IDC-R 30 51.9 0.14 0.43 2.4 36.2 0.35 3.94 0.87 3.43 43.9 82 34 643 23 24 4.2
17 IDC-R 30 51.9 0.14 0.43 2.4 36.2 0.35 3.94 0.87 3.43 43.9 82 34 643 23 22 4.2
18 SQR 40 51.0 0.089 0.43 2.9 43.0 0.35 4.33 0.88 3.60 50.3 68 147 408 42 35 4.7
19 SQR 40 51.0 0.089 0.43 2.9 43.0 0.35 4.68 0.88 3.74 50.1 75 124 330 41 44 5.1
20 SQR 40 51.0 0.089 0.42 2.4 36.2 0.35 3.96 0.80 3.45 43.9 79 184 567 50 42 4.0
21 A SQR 40 51.0 0.089 0.43 2.4 36.2 0.35 3.96 0.91 3.45 43.9 85 169 567 52 44 4.4
22 B SQR 40 51.0 0.089 0.42 2.4 36.2 0.35 4.29 0.83 3.60 43.5 92 145 474 50 55 4.7

Supplementary Table 1: Parameters for 22 qubits studied in this work, spanning shunt capacitance values Csh = 9 . . . 52 fF. Color-highlighting corresponds to the
samples A, B and C presented in detail in the main text. All parameters are design values or are derived from simualtion, except for the critical current density Jc and
the measured relaxation time Tmeas

1 . Three capacitor types were studied: IDC is “interdigital capacitor”; IDC-R is an IDC with slightly rounded corners (negligible
when compared with actualized standard IDCs, but included here for completeness); and SQR is square capacitor shape. Gap is the spacing between capacitor
features (e.g., IDC fingers). βc quantifies the coupling strength between the qubit and the resonator. EJα and ECα are respectively the Josephson energy and charging
energy of the small junction. ∆ is the qubit frequency at the qubit flux-insensitive (degeneracy) point Φb = 0. A is the anharmonicity. Veg is the simulated island
node voltage (related to the charge transverse matrix element). Ip is the simulated persistent current (related to the flux transverse matrix element). TΦ

1 , TQ1 , and TP
1

are respectively the simulated T1 values due to flux noise, charge noise, and the Purcell effect (all at Φb = 0). T sim
1 is the net simulated T1 value due to these

processes, and and Tmeas
1 is the measured relaxation time at Φb = 0.
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Supplementary Note 1 Materials and Fabrication of the High-Q Capaci-
tor

The capacitively-shunted flux qubits studied in this work were prepared using the following steps:

1. Growth and patterning of high-quality-factor (high-Q) aluminum films using molecular beam epitaxy (MBE).

2. Patterning and evaporation of the superconducting qubit loop and Josephson junctions.

3. Dicing and packaging.

Supplementary Note 1.1 Growth and patterning of high-Q aluminum
High-Q aluminum films were deposited on 50-mm C-plane sapphire wafers in a Veeco GEN200 MBE system
with a growth chamber base pressure of 10−11 torr. The wafers were cleaned in piranha solution (sulfuric acid and
hydrogen peroxide) prior to loading into the MBE system. The wafers were annealed in the MBE system at 900 ◦C
to facilitate outgassing and sapphire surface reconstruction, after which 250 nm of aluminum was deposited at a
growth rate of 0.025 nm/s and a substrate temperature of 150 ◦C (Supplementary Figure 1a).

The high-Q aluminum was patterned using contact lithography and wet-etched using Aluminum Etchant -
Type A (Transene Company, Inc.) into the following device features (Supplementary Figure 1b): shunt capacitors,
coplanar waveguide (CPW) resonators, ground planes, and optical alignment marks.

Supplementary Note 1.2 Patterning the qubit loop and Josephson junctions
The qubit loop and junctions were formed using double-angle evaporation of aluminum through Dolan-style
bridges (Supplementary Figure 1c) [2]. The free-standing bridges were realized using a bilayer mask compris-
ing a germanium hard mask on top of a sacrificial MMA/MAA layer [MicroChem methyl methacrylate (MMA
(8.5)/MAA EL9)]. The qubit loop and junctions were patterned using electron-beam lithography (Vistec EBPG5200)
and ZEP520A resist (ZEONREX Electronic Chemicals). This pattern was transferred into the Ge layer using a CF4

plasma, and the underlying MMA/MAA resist was under-etched using an oxygen plasma to create free-standing
bridges. Prior to the aluminum evaporation, an in situ argon ion milling was used to clean exposed contact points on
the MBE aluminum to ensure superconducting contact with the evaporated aluminum. The qubit loops and junc-
tions were realized with two separate angle-evaporated aluminum layers; between the two aluminum evaporation
steps, static oxidation conditions were used to prepare junctions with a certain critical current density.

Supplementary Note 1.3 Dicing and packaging
Devices were diced into 2.5 x 5 mm2 chips (as shown in the manuscript in Fig. 1a) that were mounted into gold-
plated copper packages. Aluminum wirebonds were used for both signal and ground connections between the
device and package, as well as to connect the ground planes of the CPW resonator to prevent slotline modes.
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Supplementary Note 2 Measurement Set-up and Protocol
We performed our experiments at MIT in a Leiden Cryogenics (CF-450) dilution refrigerator with a base temper-
ature of 15 mK. The device was magnetically shielded with a superconducting can surrounded by a Cryoperm-10
cylinder. All electrical leads were attenuated and/or filtered to reduce noise.

Supplementary Note 2.1 Outside the dilution refrigerator
The electronic setup for generating the readout-pulses, control-pulses, and artificial photon noise is shown in Sup-
plementary Figure 2a. All time-sensitive instruments are synchronized with a Stanford Research Systems FS725
Rubidium Frequency Standard. The readout-pulse is generated by an Agilent 8267D Vector Signal Generator
(PSG), gated by a Tektronix 5014b arbitrary waveform generator (TEK). This pulse is typically a few microseconds
long, and the tone is set at the resonator frequency dressed by the qubit in its ground state (ωg

r /2π). The control-
pulse envelope for driving the qubit is generated by the TEK and mixed with a qubit-frequency tone (ωq/2π) from
a second PSG using its internal I-Q mixer. These pulses are further gated to reduce unwanted mixer leakage.
Artificial photon noise is generated by up-converting (quadrature-mixing) 80-megahertz-wide white-noise signals
from two Agilent 33250A arbitrary waveform generators (AGI) with a tone near the cavity frequency from a third
PSG. We confirmed that the noise source behaved consistently using either one port or both ports of the I-Q mixer.
For example, with equal powers applied to each port, the output is simply a doubling of the photon noise power
generated from a single port. The carrier frequency for the noise is chosen to be ∼10 MHz away from the readout
frequency, much larger than the cavity linewidth. In addition, we gate the noise off during the readout pulse using
the TEK. The three signals are combined (relative timing illustrated in Supplementary Figure 2b) and sent to the
input port on the refrigerator. This sequence constitutes a single experimental trial, and it is repeated typically
10,000 times with a period of 200-400µs.

Supplementary Note 2.2 Inside the dilution refrigerator
The device is enclosed in a copper package, which is itself mounted inside an aluminum box to shield the device
from external electromagnetic radiation and magnetic field fluctuations (Supplementary Figure 2c). A small coil
antenna is mounted under the package lid and is used to bias the qubit with a static magnetic field (not shown). A
Yokogawa 7651 dc source provides the bias current to the coil using twisted pair wires passing through an RC low-
pass filter with cutoff around 100 kHz. On the input side, there is a total attenuation of 49 dB arising from discrete
attenuators (XMA Corporation) at various temperature stages. In addition, there is a relatively small amount of
distributed attenuation due to loss in the coaxial cables. On both the input and output sides, a high-pass filter (RLC
F-18948, 4 GHz cutoff) and a low-pass filter (RLC L-3615, 12.4 GHz cutoff) provide a net 4-12.4 GHz passband.
After the output filters, 3 isolators (Quinstar / Pamtech, model CWJ1019KS414, 3-12 GHz, with approximately
15-20 dB isolation each) are mounted on the mixing chamber. The output signal is amplified by a JPL/Caltech
cryogenic preamplifier (1-12 GHz, 30 dB gain). The output port outside the refrigerator is followed by a room-
temperature amplifier (MITEQ, AMF-5D-00101200-23-10P, 0.1-12 GHz, 43 dB gain) before mixing with a local
oscillator (LO) tone (ωro/2π − ωLO/2π = 50 MHz ) for heterodyne detection (not shown). After the mixers,
the signal is digitized using an Acquiris U1084A analog-to-digital converter (ADC) and digitally demodulated to
extract the amplitude and phase of the readout signal for qubit-state estimation.
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Supplementary Note 3 Two-Level-System Model of C-Shunt Flux Qubit

Supplementary Note 3.1 Parameterization of the two-level-system Hamiltonian
In the main text, we elect to parameterize the C-shunt flux qubit using the familiar notation of the conventional
flux qubit [3], albeit with important generalizations due to the influence of higher energy levels. In the laboratory-
frame, the two-level-system Hamiltonian for an individual C-shunt flux qubit near flux-degeneracy and coupled to
a CPW resonator is:

Ĥ =
~
2

[∆ (Φb) σ̂x + ε (Φb) σ̂z] + ~ωr(â
†â+ 1/2) + ~g (Φb) σ̂y(â† + â). (1)

Here, the three terms are respectively the qubit, resonator, and qubit-resonator interaction Hamiltonians, σ̂x,y,z are
the Pauli operators for the qubit, Φb ≡ Φe −Φ0/2 is the flux bias due to an external magnetic flux Φe (Φ0 ≡ h/2e
is the superconducting flux quantum), â†(â) is the raising(lowering) operator for resonator photons, ωr is the
resonator angular frequency and g is the qubit-resonator coupling angular frequency. In this coordinate system, the
qubit shunt-capacitor couples transversally to the qubit through σ̂y. Similarly, charge fluctuations connect through
σ̂y.

Within our parametrization, the circulating current states of the C-shunt flux qubit have energies±~ ε(Φb)/2 ≡
±Im(Φb) Φb, where Im (Φb) ≡ [Ip1 (Φb)− Ip0 (Φb)]/2 is related to the difference in the flux-dependent circulat-
ing (persistent) currents Ip0(Φb) and Ip1(Φb), and these states hybridize with a flux-dependent energy ~∆(Φb).
With this generalization, a flux-dependent offset energy ~εoff (Φb) ≡ Ioff (Φb) Φb is removed, where Ioff (Φb) ≡
[Ip1 (Φb) + Ip0 (Φb)]/2 . In addition to their flux dependence, the currents Ip0,p1(Φb) generally do not have the
same magnitude, nor need they have opposing sign. This is in marked contrast to the conventional flux qubit,
where Ip0 = −Ip1 ≡ Ip with both Ip and ∆ being independent of flux within a certain region about Φb = 0. The
fact that Ip0,p1 (Φb) and ∆ (Φb) are flux-dependent for the C-shunt flux qubit reflects the non-negligible role of its
higher energy levels. Consequently, we numerically diagonalize the full qubit-resonator Hamiltonian for parameter
extraction and modeling.

The extent to which higher levels of the qubit influence the parameters in Eq. (1) is determined by the ratio
ω

(k)
p /ωq where ωq =

√
ε(Φb)2 + ∆(Φb)2 is the qubit frequency, and ω

(k)
p are the plasma frequencies of the

additional oscillator-like modes of the circuit. For conventional flux qubits, these modes are typically much higher
in energy than the qubit excited state and can be neglected. However, as the shunt capacitance is increased, at least
one of these modes shifts to lower frequency and can eventually become comparable to the qubit frequency itself.
For example, one of these modes is the small junction “plasma frequency” ωp,α = 1/

√
LJ,αCα determined by

its Josephson inductance LJ,α and its total capacitance Cα (including the shunt capacitor). This is the frequency
of the oscillator-like degree of freedom for the qubit in each of the two wells of its double-well potential profile
(each well is associated with a circulating persistent current Ip0,p1), and this frequency is ideally far above ωq.
For a conventional flux qubit, ω(k)

p /ωq & 10, and the parameters in Eq. (1) are largely flux-independent over
a wide range of flux bias about Φ0/2 (see Ref. 4 for experiments that study the flux range required to access
higher levels for a particular conventional flux qubit). As the ratio ω(k)

p /ωq is decreased, the excited states of
the plasma mode shift closer to the two qubit levels and quantum mixing (hybridization) occurs, resulting in
increased quantum fluctuations of the current. Correspondingly, there is a decrease in the range in flux over
which the parameters in Eq. (1) are essentially flux independent. Eventually, when ω(k)

p /ωq & 1, the qubit can be
descried as a weakly-harmonic oscillator (much like a transmon), where the only remnants of the persistent currents
are small, state-dependent displacements of the oscillator current from zero, which are much smaller than their
quantum fluctuations. Typically, the resulting weak anharmonicity is inverted relative to that of the transmon. The
highest-coherence C-shunt flux qubits considered in this work are in an intermediate regime, having ω(k)

p /ωq & 2.
Their anharmonicity is around 500-900 MHz for the longest lived devices, generally larger than the 200-300 MHz
observed in transmons.

The role of higher energy levels is described in Section Supplementary Note 4, along with a comparison
between the conventional and C-shunt flux qubits. Ultimately, to account for the higher energy levels, the two-
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level parametrization must be deduced from experiment, an analytic treatment (Section Supplementary Note 4), or
simulations (Section Supplementary Note 5).

Supplementary Note 3.2 Dispersive two-level-system Hamiltonian
The unitary Û1 = exp

[
i (π2−θ)σ̂y/2

]
rotates Eq. (1) from the laboratory frame to the qubit frame,

Û1ĤÛ†1 = ~ωqσ̂z/2 + ~ωr(â
†â+ 1/2) + ~gσ̂y(â† + â) , (2)

where θ = arctan(ε/∆). The transverse qubit-resonator coupling is unaffected by the transformation, since the
flux bias Φb rotates the qubit quantization axis within the x−z plane (laboratory frame) and the capacitive coupling
is transverse to this plane.

In the dispersive regime, |δq,r|= |ωq−ωr|�g, after a second unitary transformation Û2 = exp
[
−i g

∆q,r
(âσ̂++

â†σ̂−)
]
, the Hamiltonian can be approximated:

Ĥdisp = Û2Û1ĤÛ†1 Û
†
2 ≈ ~ωqσ̂z/2 + ~ωr(â

†â+ 1/2) + ~ 2χ(â†â+ 1/2)σ̂z/2 . (3)

Here, ωq =
√
ε(Φb)2 + ∆(Φb)2 is the qubit angular frequency and χ(Φb) is related to the qubit-state-dependent

dispersive shift 2χ(Φb) = g2(Φb)/δq,r(Φb) of the resonator used for readout. The last term includes the Stark
shift ∆Stark = 2χ(Φb) n̂ due to the resonator photon number n̂ = â†â and the Lamb shift ∆Lamb = χ(Φb) due
to the resonator zero-point energy. Higher levels of the qubit generally play an important role in constructing the
flux-dependent dispersive shift. While it is straightforward to measure this experimentally, one must go beyond a
two-level approximation to calculate it accurately.

Supplementary Note 4 Analytic Treatment and Comparison of the Con-
ventional and C-Shunt Flux Qubits

Supplementary Note 4.1 Conventional persistent-current flux qubit
Before developing the system model for the C-shunt flux qubit, we review the conventional persistent-current flux
qubit as presented in Ref. [3]. The conventional flux qubit circuit is illustrated in Supplementary Figure 3 (dashed
box). The qubit loop is interrupted by three Josephson junctions, and ϕi (i = 1, 2, 3) are the associated gauge-
invariant phase differences. Two of the junctions have the same critical current Ic and junction capacitance C,
and thus the same Josephson energy EJ ≡ IcΦ0/2π and charging energy EC ≡ e2/2C. The third junction is
smaller in area by a factor α, resulting in a reduced critical current αIc and reduced junction capacitance αC. The
corresponding energy scales are αEJ and EC/α.

The flux quantization condition gives ϕ1 − ϕ2 + ϕ3 = 2πfe, where fe ≡ Φe/Φ0 is the external magnetic
flux threading the loop in units of the superconducting flux quantum Φ0 = h/2e. When α > 0.5 and fe ≈ 0.5,
the potential energy of the qubit assumes a double-well profile. The wells are associated with clockwise and
counterclockwise circulating currents tunable by the applied magnetic flux. These diabatic circulating-current
states tunnel-couple with a strength depending on the height of the inter-well barrier or the scale factor α.

Tuning fe tilts the double well potential. In the vicinity of fe ≈ 0.5, the circulating currents are of opposite sign
and essentially equal magnitude. Consequently, in this limit, higher energy levels play little role and the two-level
approximation is a good approximation to the full Hamiltonian. However, even for the conventional flux qubit,
higher energy levels become important for flux biases far from fe ≈ 0.5, where the double-well potential is tilted
to such a degree that its higher levels influence the circulating currents [4,5]. The region about fe ≈ 0.5 for which
the two-level system is a good approximation is reduced as α decreases.
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Supplementary Note 4.2 C-shunt flux qubit: quasistatics
The C-shunt flux qubit has three features that are distinctly different from the conventional design: (i) lower Ic,
(ii) lower α, typically α < 0.5 (defined for three-junction qubits) and (iii) an additional large capacitor Csh = ζC
(ζ � 1) shunting the smaller junction. As we show below, both (i) and (ii) lead to reduced sensitivity to flux noise,
while (iii) reduces sensitivity to charge noise.

Following a recipe similar to that presented in Ref. [3], the three-junction capacitively-shunted flux qubit can
be described by a Hamiltonian consisting of the kinetic and potential part:

Ĥ = T̂ + Û ,

T̂ =
1

2
(Q̂ + q̂ )T C−1(Q̂ + q̂ ) ,

Û = EJ{2 + α− cosϕ1 − cosϕ2 − α cos(2πfe + ϕ1 − ϕ2)} . (4)

In the kinetic part, Q̂ and q̂ are the charges and induced charges on the islands:

Q̂ = −i 2e

(
∂
∂ϕ1

∂
∂ϕ2

)
and q̂ =

(
q
A

q
B

)
; C = C

(
ζ + 1 + α −(ζ + α)
−(ζ + α) ζ + 1 + α

)
. (5)

The kinetic energy represents the total electrostatic energy stored in the capacitors, and is dominated by the shunt
capacitor, since ζ � 1, α. The shunt capacitor largely reduces the effective charging energy, causing the system
less sensitive to charge fluctuations. Compared with the circuit model in Ref. [3], there is no explicit gate electrode
in our circuit. The induced charge, however, is included for modelling the charge noise, and will be discussed later
in this section. In the static case, q

A
= q

B
= 0. The potential energy sums up the Josephson energy stored in the

junctions. It assumes a two-dimensional periodic profile. When α ≤ 0.5, as in this C-shunt design, there is only
one well in each unit cell (see Supplementary Figures 4a and 4b), a distinction from the double-well profile in the
conventional case. This leads to a smaller circulating current for the C-shunt flux qubit, reducing its sensitivity to
flux fluctuations.

By choosing ϕp = (ϕ1 + ϕ2)/2 and ϕm = (ϕ1 − ϕ2)/2 as coordinates and using the Cooper-pair number
operators n̂σ = −i ∂/∂ϕσ (σ = p,m), we have the reduced Hamiltonian

Ĥ =
1

2
EC,pn̂

2
p +

1

2
EC,mn̂

2
m + EJ{2 + α− 2 cosϕp cosϕm − α cos(2πfe + 2ϕm)} , (6)

where EC,p = e2/(C/2) and EC,m = e2/C(ζ+α+1/2) are the effective charging energy for the p-mode and m-
mode respectively. Ideally, because the introduction of the shunt capacitor ensures that EC,p ≈ 2ζEC,m � EC,m,
we can safely omit the p-mode, since the characteristic frequency Ωp =

√
EC,pEJ,p/~ ≈ 2π × 50 GHz is much

higher. Here, EJ,p = 2EJ is the effective p-mode Josephson energy. In a realistic design, one must also assess the
role of additional plasma modes, for example, due to capacitance to ground, and their characteristic frequencies.
The simplified Hamiltonian becomes

Ĥm =
1

2
EC,mn̂

2
m + EJ{−2 cosϕm + α cos(2πfb + 2ϕm)} , (7)

where fb = fe − 0.5 is the reduced external flux bias away from one-half flux quantum.
To understand the energy structure of the system, we Taylor-expand the potential functionU(ϕm) = EJ{−2 cosϕm+

α cos(2πfb + 2ϕm)} around the well minimum ϕ∗m,

U(ϕm) =

∞∑
k=0

U (k)(ϕm − ϕ∗m)k , (8)
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where U (k) = (1/k!)(∂kU/∂ϕkm|ϕm=ϕ∗m
). For a given fb, ϕ∗m is single-valued within the range ϕm ∈ [−π, π] and

obtainable by solving the equation U ′(ϕ∗m) = 0. By definition, U (0) is a constant and U (1) = 0. Therefore, we
can rewrite Eq. (7) as:

Ĥm = Ĥ0 + V̂

=

(
1

2
EC,mn̂

2
m′ +

1

2
EJ,mϕ̂

2
m′

)
+

∞∑
k=3

U (k)ϕ̂km′

= ~Ω(0)
m (b̂†b̂+

1

2
) +

∞∑
k=3

U (k)ϕk
Z
(b̂+ b̂†)k . (9)

On the second line, EJ,m = 2U (2) is the effective Josephson energy, ϕ̂m′ = ϕm′ = ϕm − ϕ∗m and n̂m′ =
−i ∂/∂ϕm′ . We group the quadratic potential term with the kinetic part so that their combination H0 describes
a one-dimensional harmonic oscillator. The last line expresses the Hamiltonian in terms of the raising (b̂†) and
lowering (b̂) operators of the harmonic oscillator. The oscillator frequency is Ω

(0)
m =

√
EC,mEJ,m/~. The quan-

tum ground-state phase uncertainty is ϕ
Z

= (EC,m/4EJ,m)1/4 [6]. After the replacement ϕ̂m′ = ϕ
Z
(b̂ + b̂†),

the perturbation matrix V can be conveniently computed in the space spanned by the Fock states of H0. Note
that ~Ω

(0)
m , U (k) and ϕZ are all fb-dependent. The eigenstates can be solved for a given order of expansion. In

general, higher-power expansion terms introduce anharmonicity as well as modulate the harmonic frequency. For
simplicity and without loss of generality in the approach, we restrict ourselves to the subsystem spanned by the
first-three levels {|g〉 , |e〉 , |f〉}. Within a first-order perturbation analysis, we have the approximate Hamiltonian

Ĥ = ~
(

Ωb̂†b̂+
A
2
b̂†b̂†b̂b̂

)
, (10)

where Ω and A are respectively the fb-dependent harmonicity and anharmonicity. As an important example, they
can be derived at fb = 0, where ϕ∗m = 0. The expansion terms then become

U (2)/EJ = 1− 2α ,

U (3)/EJ = 0 ,

U (4)/EJ =
8α− 1

12
,

U (5)/EJ = 0 ,

... (11)

All odd-power terms disappear due to symmetry of the potential at fb = 0. The term U (2) provides a quadratic
potential and thus harmonicity when α < 0.5, which is consistent with the ”slightly anharmonic oscillator” model
developed here. When α > 0.5, as in the conventional flux qubit, the potential becomes a concave function with a
rising barrier which splits the landscape into double wells. The quartic potential from U (4) is the leading term that
introduces anharmonicity. Keeping terms up to U (4), we have ~Ω =

√
EC,mEJ,m + λEC,m and ~A = λEC,m,

where EJ,m = 2(1 − 2α)EJ and λ = 8α−1
8(1−2α) . Our present C-shunt designs are within the regime of α > 0.125,

giving a positive anharmonicity in contrast to the negative one which is characteristic in transmon qubits.
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Supplementary Note 4.3 C-shunt flux qubit: time-dependent fluctuations
We now consider flux noise and charge noise within this analytical model. Small flux fluctuations (δf ) affect this
anharmonic system by modulating the potential energy. That is

δĤf = δÛ = −2παEJ sin(2πfb + 2ϕm)δf

= −2παEJ{sinφ cos(2ϕm′) + cosφ sin(2ϕm′)}δf

≈ −2παEJ{sinφ (1− 2ϕ2
Z
(b̂+ b̂†)2) + cosφ 2ϕ

Z
(b̂+ b̂†)}δf , (12)

where φ = φ(fb) = 2πfb + 2ϕ∗m(fb). The (b̂ + b̂†)2 term contains longitudinal modulation while the (b̂ + b̂†)
term provides only transverse modulation, that is, a coupling matrix element between adjacent levels.

In the spectral domain, fluctuations near frequency Ω are of particular interest because of their ability to induce
g−e transitions, and thus play an essential role in qubit driving and relaxation. Consider a coherent drive δf ∝
cos(ωdt) with driving frequency ωd ≈ Ω. In the interaction frame, one can show that both the fast longitudinal
oscillations and transverse counter-rotating terms are negligible in the weak driving limit. This simplifies the
three-level interaction-frame Hamiltonian to

ˆ̃H = ~

 2∆ω +A
√

2 ΩR/2 0√
2 ΩR/2 ∆ω ΩR/2

0 ΩR/2 0

 , (13)

where ∆ω = Ω− ωd is the detuning of the drive from the g−e transition frequency. In the regime of weak drive,
namely ωq,A � ΩR, the system is effectively protected from transitions to the third level. Therefore, we can
further reduce the system to two levels,

Ĥ =
1

2
(~ωq σ̂z + ImΦ0 δf σ̂x) , (14)

where ωq =ωq(fb) = Ω as in Eq. (10) and Im = Im(fb) =−8παϕZ cosφEJ/Φ0. Here, Im is the fb-dependent
current difference between the parameterized circulating-current states (See section Supplementary Note 3). The
scaling Im ∝ αE

3/4
J E

1/4
C ζ−1/4 indicates the efficiency of reducing flux-noise sensitivity by lowering α and EJ,

as we implemented in the C-shunt design. For example, qubit sample B in our device (see main text) has α ≈ 0.4,
EJ/h ≈ 65 GHz and ϕZ ≈ 0.28, leading to Im ≈ 55 nA.

On the other hand, charge fluctuations (δqA and δqB ) invoke perturbation via the kinetic energy T̂ . Expanding
T̂ in Eq. (4) and ignoring the p-mode (as before), we have the perturbation Hamiltonian,

δĤq = δT̂ = δq̂T C−1Q̂

= − e

C(2ζ + 2α+ 1)
[−in

Z
(b̂− b̂†)](δq

A
− δq

B
) . (15)

On the second line, we used the transformation n̂ = −inZ(b̂− b̂†), where nZ = (EJ,m/4EC,m)1/4 is the quantum
ground-state uncertainty in Cooper-pair number. Similar to the flux-noise argument above, charge fluctuations also
connect to the system transversely, and moreover, are also orthogonal to the flux. In addition, the perturbation
depends only on the differential mode of the induced charges between islands A and B, the branch charge across
the small junction.

Adding δĤq to the two-level approximated Hamiltonian in Eq. (14), we have

Ĥ =
1

2
(~ωq σ̂z + ImΦ0 δf σ̂x + nZEC,mδnm σ̂y) , (16)

where δnm = (δq
A
− δq

B
)/(−e) is the differential electron number fluctuation. The charge-noise sensitivity is

n
Z
EC,m ∝ E

3/4
C,m ∝ ζ−3/4. Therefore, the introduction of a large shunt capacitor makes the system less sensitive
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to charge fluctuations. In qubit sample B (see main text), n
Z
EC,m/h ≈ 1.2 GHz. Assuming Johnson-Nyquist

noise from a 377-Ω resistor (free-space impedance) and a parameterized gate capacitance of 0.03C = 0.12 fF, we
find a charge-noise-limited T1 of about 60µs.

The capacitive coupling of the qubit loop to the resonator can be modelled in a similar way as the node charges.
The voltage fluctuations on the coupling capacitor Cg induce charge fluctuations, and hence enter the Hamiltonian
through the same channel as charge. Consequently, the interaction Hamiltonian between the qubit and resonator
can be written as

Ĥq−r = ~g σ̂y (â† + â) , (17)

where g is the coupling strength.

Supplementary Note 5 Simulation of the Full System Hamiltonian
Supplementary figure 5a shows a schematic of the configuration for the devices described in this work, where the
five islands labelled numerically in white text (1-5) follow the electrostatic description of Ref. [1] with island 4
the center conductor of the coplanar waveguide resonator. Supplementary figure 5b shows an equivalent circuit in
which islands 1 and 5 have been grounded (equivalent to neglecting the parasitic stripline modes of the resonator).
Filled black circles in this circuit indicate the five canonical node variables that would be required for its full quan-
tum description. Junction capacitances are labelled CJa and CJb for the small and large junctions, respectively,
and Lg is the geometric inductance of the qubit loop. Supplementary figures 5c and 5d show successive (approxi-
mate) reductions of the circuit to four and three node variables (labelled in blue), respectively. Bold lines in these
schematics indicate the chosen spanning tree (equivalent to a choice of gauge) [7, 8].

The quantities in panels (b) and (c) are related to those in (b) according to

CT = C13 + C35 +
C34

Ctot
4

(C14 + C15)

Ca = C23 +
C24

Ctot
4

C34

Cb = C12 + C25 +
C24

Ctot
4

(C14 + C15)

Csh = CA +
CTCB

CT + CB
(18)

where Ctot
4 ≡ C14 +C24 +C34 +C45. The dimensionless capacitive division factor by which the resonator voltage

is coupled to the qubit is given by:

βc = [2C34(C12 + C25)− 2C24(C13 + C35)]

×
{

2C24C34 + (C24 + C34)[2(C23 + CJa) + CJb] + (C13 + C35)[2(C23 + C24 + CJa) + CJb]

+(C12 + C25)[2(C13 + C23 + C34 + C35 + CJa) + CJb]
}−1

. (19)

Note that the junction capacitances influence this value, in particular when the shunt capacitors are smaller.
Panel (c) is the minimal circuit that fully captures the experimental qubit devices (excluding the resonator), in

particular because in nearly all devices the total Csh is determined by the combination of CT, CB, and Ca. The
approximation inherent in (d) arises from the fact that the two fundamental Josephson-like modes of the circuit
(the qubit mode in which nodes 1 and 2 oscillate out of phase, and the “plasma” mode in which they oscillate in
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phase) couple to the same shunt capacitance Csh. By contrast, in the circuit of panel (c), the plasma mode may
couple to a larger capacitance CB + CT > Ca than the qubit mode. The result is that, unlike (c) where increasing
the shunt capacitance leaves the plasma mode frequency far above the region of interest, in the more realistic
circuit of (d) the plasma mode frequency shifts down as the total shunt capacitance is increased, due to the effect
of CB and CT. For the purpose of the present work, however, it turns out that the circuit of panel (d) gives a good
approximation (5% or better) to all quantities considered, except inelastic quasiparticle tunneling matrix elements,
where a correct treatment of tunneling events through the two larger junctions precludes grounding one side of
those junctions. Note that it is necessary to include the geometric loop inductance (though its effect on the energy
levels is small) to account for the flux noise matrix elements to this accuracy.

The Hamiltonians for the two circuits are

Ĥ3 = 4n̂ ·EC3 · n̂ + EJα

[
1− cos(ϕ̂2 − ϕ̂1 + ϕe)

]
+EJb

[
2− cos(ϕ̂2 − ϕ̂3)− cos(ϕ̂1)

]
(20)

Ĥ4 = 4n̂ ·EC4 · n̂ + EJα

[
1− cos(ϕ̂2 − ϕ̂1 + ϕe)

]
+EJb

[
2− cos(ϕ̂2 − ϕ̂3)− cos(ϕ̂4 − ϕ̂1)

]
+
EL

2
(ϕ̂3 − ϕ̂4)2 (21)

where n̂ ≡ {n̂i} is the vector node charge operator, EC3,4 ≡ e2/2 · C−1
3,4 is the inverse charging energy matrix,

EJα and EJb are the Josephson energies of the small and large junctions, respectively, ϕ̂i are the node phase
operators satifying

[
ϕ̂j , n̂k

]
= iδjk, and ϕe ≡ 2πΦe/Φ0 is the dimensionless external flux through the qubit loop.

Finally, EL ≡ (Φ0/2π)2/Lg is the characteristic inductive energy scale for the geometric loop inductance Lg. The
capacitance matrices for the two circuits are given by:

C3 =

CJb + CJa + Csh −CJa − Csh 0
−CJa − Csh CJb + CJa + Csh −CJb

0 −CJb CJb

 (22)

C4 =


CB + CJb + CJa + Ca −CJa − Ca 0 −CJb

−CJa − Ca CT + CJb + CJa + Ca −CJb 0
0 −CJb CJb 0
−CJb 0 0 CJb

 (23)

To diagonalize the full Hamiltonians for the two circuits, we first set the phase across the inductor to zero and
diagonalize the resulting Hamiltonian (which has either two or three node variables) in a truncated charge basis
containing the states: −10,−9, ..., 1, 0, 1, ..., 9, 10 for each island (in units of Cooper pairs), having dimension
212 = 441 or 213 = 9261. We use the resulting set of eigenstates Ψ

(0)
m and eigenenergies E(0)

m to re-express the
full Hamiltonian in a product state basis: Ψ

(0)
m ⊗ |ν〉 where |ν〉 are linear oscillator states resulting from the loop

inductance Lg and the shunt capacitance across it. The oscillator basis is truncated at ν ≤ 3, and the Lg = 0 qubit
basis is truncated at m ≤ 75 for the three-node circuit, and m ≤ 300 for the four node circuit. The increased basis
size for the latter case is necessary because the four-node circuit does not have an inductance for its common mode
(the one in which all islands oscillate together relative to ground), and therefore no potential energy, resulting
in simple, charge eigenstates. The resulting Hilbert space dimensions for the two circuits are 3 × 75 = 225
and 3 × 300 = 900, much smaller than that which would have otherwise been required: 212 × 3 = 1323 and
213 × 3 = 27783 states. This method is a useful way to efficiently include linear inductances into Josephson
quantum circuits [9].

Once the eigenenergies and eigenstates of the qubit circuits are determined, this system is again truncated
(typically at ∼10 qubit energy levels) and then coupled to the resonator using the Hamiltonian

Ĥq−r = 2e (n̂1 − n̂2) · βcVr0(â† + â), (24)
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where βc is obtained from Eq. (19) above, and Vr0 = ωr

√
2hZr is the rms ground state resonator mode voltage for

a mode impedance Zr. A truncated basis of up to ∼ 5 photons in the resonator mode is then used to diagonalize
the resulting dressed Hamiltonian.

Supplementary Note 6 High-Power Spectrum and Higher-Level Qubit Tran-
sitions

To characterize higher levels of the qubit, we perform high-power qubit spectroscopy (Supplementary Figure 6).
The measurement consists of scanning the drive frequency (ωd) as a function of the flux bias with a much higher
power than that used in the main text in Fig. 2a. Strong driving reveals more qubit transitions in the spectrum,
including the first four qubit levels, single and multi-photon transitions, and resonator-mediated transitions. The
same simulation used to develop our noise models is used to add the solid lines in Supplementary Figure 6. To
match the measured transition frequencies optimally across the entire flux bias range, we generally need to tune
somewhat the design parameters (Supplementary Table 1), typically by 10−25%. Once adjusted, the fitting is very
good and reproduces the measured spectroscopy over a wide range of flux and frequency values.

To characterize the anharmonicity accurately, we use a two-tone low-power pulse technique to measure 0−1 and
1−2 transitions sequentially (Supplementary Figure 7). A short π-pulse at 0−1 transition frequency first prepares the
qubit at |1〉 state. Then, a low-power frequency scan resolves the 0−1 and 1−2 transitions. The frequency difference
gives the anharmonicity which is 490 MHz for Qubit B. This is somewhat less than the 830 MHz predicted solely
from the design values (Supplementary Table 1). Although the measured value is off by approximately 330 MHz
from the anharmonicity predicted directly from the design values, it is important to keep in mind that this few-
hundred MHz difference is on top of qubit frequencies more than 10 times larger (i.e., 4.7-5.2 GHz) and, in this
sense, the error is rather small.

Supplementary Note 7 Qubit Parameters
The parameters for the 22 qubits studied in the work are listed in Supplementary Table 1.

Supplementary Note 8 Noise Models
The total T1 of the qubit is taken to be:

1

T1
=

1

TΦ
1

+
1

TQ1
+

1

T qp
1

+
1

TP
1

(25)

where the terms come from electric noise, magnetic noise, inelastic quasiparticle fluctuations, and the Purcell
effect, respectively.

The coupling of electric and magnetic noise to the qubit is modeled as shown in Supplementary Figure 8, in
terms of voltage sources δVi weakly coupled to the circuit islands, and a current source δIl weakly coupled to
the circuit loop. We assume the weak-coupling limit for both of these, where Cci are negligible compared to the
corresponding node capacitances (diagonal elements of C), and Mc is negligible compared to the qubit’s loop
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inductance Lg. In this limit, the electric noise can be expressed as well-defined charge fluctuations δQi for node
i (with magnitudes independent of the node capacitances), and the magnetic noise as flux fluctuation through the
loop δΦl (with magnitude independent of the loop inductance). The coupling Hamiltonians for these fluctuations
to the qubit can be written:

ĤδΦ = ÎlδΦl (26)
ĤδQi

= V̂iδQi (27)

where Îl ≡ Φ0(ϕ̂3− ϕ̂4)/2π/Lg is the loop current operator and V̂i ≡ (Q̂ ·C−1)i is the voltage operator for node
i. The resulting contributions to the total decay rate are:

1

TΦ
1

=
1

~2

∣∣〈e|Îl|g〉∣∣2SΦ(ωq) (28)

1

TQ1
=

1

~2

∣∣〈e|V̂|g〉∣∣2SQ(ωq) (29)

For the Purcell-enhanced decay rate of the qubit excited state, we use the expression:

1

TP
1

=
1

~2

∣∣〈ẽ1γ |Ĥq−r|g̃1γ〉
∣∣2κ (30)

where Ĥq−r is defined in Eq. (17) above, κ is the resonator decay rate, and |g̃1γ〉, |ẽ1γ〉 are the two dressed energy
eigenstates of the qubit/resonator system in the one-photon subspace.

As shown in purple in Supplementary Figure 8, the quasiparticle noise contribution to the decay rate is modeled,
following Ref. 10, as a parallel admittance Yqp and corresponding current fluctuations δI . This approximate
description is justified since Yqp(ωq) � YJ(ωq) where YJ is the junction impedance. The resulting decay rate
is [10, 11]:

1

T qp
1

=
1

4

3∑
k=1

∣∣〈ẽ1k|t̂kqpe
iϕk/2 − t̂k†qpe

−iϕk/2|g̃1k〉
∣∣2Skqp(ωq) (31)

where the sum is over the three junctions, the operator t̂kqp transfers a quasiparticle through junction k, the phase
offsets are ϕk = ϕe for the small junction and zero otherwise, and |g̃1k〉, |ẽ1k〉 are qubit energy eigenstates in the
presence of a single quasiparticle on one electrode of junction k. The effective quasiparticle current noise spectral
density Skqp for junction k is given approximately by [10, 11]:

Skqp = xqp
EJk

h

√
8∆Al

ωq
(32)

where xqp is the dimensionless quasiparticle density (scaled by the density of superconducting electrons), and
∆Al is the superconducting energy gap of aluminum. The eigenstates of the qubit in the presence of a single
quasiparticle on each circuit node are obtained using a modified charge representation for that node with 20 basis
states: −19/2,−17/2, ...,−1/2, 1/2, ..., 17/2, 19/2 (in units of Cooper pairs). The Hamiltonian is separately
diagonalized for each single-quasiparticle configuration using the methods described above. Then the matrix
elements in Eq. (31) above are evaluated between eigenstates of these different configurations, corresponding to a
single quasiparticle moving through each of the three Josephson junctions in the loop. The resulting decay rates
associated with inelastic tunneling through each junction are summed to produce the total rate. Note that we
neglect processes associated with the presence of two quasiparticles simultaneously, which is justified based on
our observation of n̄qp ≈ 0.26.
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Supplementary Note 9 Definitions of Power Spectral Densities
The spectral data shown in Fig. 3b in the main text represent a symmetrized PSD, the Fourier transform of the
symmetrized autocorrelation function,

S(ω) =

∫ ∞
−∞

dτ exp(−iωτ)
1

2
〈λ̂(0)λ̂(τ) + λ̂(τ)λ̂(0)〉 , (33)

where λ̂ is the correlator of interest and is an operator. Clearly, by definition, S(−f) = S(f), and the effects of
classical and quantum noise are represented equally at both positive and negative frequencies.

In comparison, the unsymmetrized definition for the PSD,

SU(ω) =

∫ ∞
−∞

dτ exp(−iωτ) 〈λ̂(0)λ̂(τ)〉 , (34)

explicitly distinguishes absorption and emission (stimulated and spontaneous) by the qubit. The emission and
absorption rates are related to the positive and negative part of the spectrum respectively,

Γ− =
1

4
SU(ωq) ,

Γ+ =
1

4
SU(−ωq) . (35)

At equilibrium temperature,

SU(−ωq)

SU(ωq)
= exp

(
− ~ω
k

B
T

)
. (36)

This equation indicates that, in the classical, low-frequency limit (~ω � k
B
T ), S(ω) = SU(ω) = SU(−ω). In

the quantum, high-frequency limit (~ω � k
B
T ), SU(ω) = 2S(ω). Therefore, a factor 2 difference arises at high

frequencies between the two PSD definitions. Since the 1/f noise at low frequencies is classical, arising from
an ensemble of fluctuators [12], we elect to use the symmetrized PSD. Then, to make a meaningful comparison
between the 1/f noise PSD and the corresponding values from the measured and simulated emission rates of the
qubit, we must be cognizant of these two definitions [13] in order to plot the data appropriately.

Supplementary Note 10 Noise Spectroscopy via Spin Locking

Supplementary Note 10.1 Spin locking technique
Spin-locking or T1ρ noise spectroscopy is an accurate method developed for resolving noise power spectral den-
sities (PSD) by measuring qubit relaxation rates in the rotating frame during driven evolution. The spectroscopy
spans the intermediate frequency range, i.e., achievable Rabi frequencies, without substantially undermining the
locking condition. Details of this method are discussed in Ref. [14].

When a two-level system (TLS) is driven by a weak (ωR�ωq) and resonant (ωR�∆ω) tone, evolution can
be conveniently described in the rotating frame, which revolves around the z-axis at the drive frequency (Supple-
mentary Figure 9a). It can be viewed as a fictitious TLS with a quantizing field pointing to X. The level splitting
is now the (locking) Rabi frequency, ωR, rather than ωq for the free-evolution case. Note that the corresponding
longitudinal relaxation time, T1ρ, is defined with respect to the new quantization axis. The source of the relaxation
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is noise at the Rabi frequency, transverse to the X-axis. Given the definition in Ref. [14], the rate Γ1ρ can be
expressed as

Γ1ρ =
1

T1ρ
=

1

2
S⊥X(ωR)

=
1

2

[
SY(ωR) + SZ(ωR)

]
=

1

2

[1
4
Sx(ωq + ωR) +

1

4
Sx(ωq − ωR)

]
+

1

2
Sz(ωR)

≈ 1

4
Sx(ωq) +

1

2
Sz(ωR)

=
1

2
Γ1 + Γν . (37)

Here, Γ1 = 1/T1 = 1
2Sx(ωq) is the qubit-frame longitudinal relaxation rate and Γν = 1

2SZ(ωR) is the rate
associated with the Rabi-frequency noise. In Eq. (37), the contributing rotating-frame noise in the second line is
transformed to qubit-frame noise in the third line. The “1/4”-factor arises from the halved noise amplitude at the
positive sideband.

Equation (37) suggests that the noise PSD at the Rabi frequency can be extracted by measuring the qubit-frame
and rotating-frame longitudinal relaxation rates and making the appropriate subtraction. The spin-locking tech-
nique [15–17] is a straightforward way to measure the rotating-frame longitudinal relaxation. We use the standard
three-pulse spin-locking sequence (Supplementary Figure 9b), under which the qubit undergoes T1ρ relaxation dur-
ing the continuous driving pulse (Supplementary Figure 9c). The recorded decay is fit to an exponential function
to derive the damping rate Γ1ρ.

Supplementary Note 10.2 Spectral density for thermal photons in a resonator
Thermal photons in a resonator with decay rate κ have an exponential two-time photon-number autocorrelation
function C(τ) in the small n̄ limit [18, 19],

C(τ) = n̄ exp(−κτ). (38)

Correspondingly, by the Weiner-Khinchin theorem, the associated power spectral density (PSD) of the thermal
photons in the resonator is the fourier transform of Eq. (38),

Snn(ω) =
2κn̄

ω2 + κ2
. (39)

From Bloch-Redfield theory, longitudinal relaxation is connected with the two-time correlation of the transverse
noise. This also applies to the rotating-frame analogue in the T1ρ process. The measured T1ρ noise spectrum is
thus related to the traditional PSD. The effect from the non-Gaussian statistics in the photon noise can be ignored
in such relaxation process. To derive the effective PSD as seen by the qubit, one must account for the dispersive
coupling χ of the qubit to the resonator and its associated Stark shift (i.e., the frequency shift per photon), and the
factor η = κ2/(κ2 + 4χ2) that scales the effective photon population seen by the qubit. The resulting PSD is

Sz(ω) = (2χ)2 [Snn(ω)]n̄→ηn̄ = (2χ)2 2κηn̄

ω2 + κ2
. (40)
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Supplementary Note 11 Comparing Models for Ohmic Charge Noise and
Ohmic Flux Noise

In the main text Fig. 3a (device C), it is clear that our data clearly support the position that 1/f flux noise is a T1

mechanism. However, above 3 GHz in this device, there is an ambiguity between ohmic charge noise (magenta
dahsed line, Fig. 3a) and ohmic flux noise (grey dashed line, Fig. 3a). We used ohmic charge noise in our models
in the main text, because there is a known physical basis for its role in relaxation from prior work and it gave a
slightly better match to experimental results across all 22 devices. In Supplementary Figures 10a - 10f, we apply
our model to the flux dependence of devices B and C, and to the prediction of T1 at the flux insensitive points of
all 22 qubits under two conditions:

• using ohmic charge noise as was done in the main text,

• using ohmic flux noise in place of ohmic charge noise.

We note that the two models give a similarly reasonable match to the data for all qubits. The one possible exception
is for device C (Supplementary Figures 10a and 10b) above 6 GHz, where this device is highly sensitive to charge
noise. In this region, one might make a plausible distinction between the efficacy of the two models. Making a
stronger distinction between ohmic charge noise and ohmic flux noise will be a topic of future work.

Supplementary Note 12 Thermal Photon Noise in the Low-Number Regime
The long-time behavior in Stark shift (∆th

Stark) and dephasing rate (Γth
ϕ ) due to thermal photons has a nonlinear

dependence on the photon number (n̄) in general. Equations (43)-(44) in Ref. [20] give the dependence for an
arbitrary ratio between χ and κ,

∆th
Stark =

κ

2
Im[
√
Z ]− χ ,

Γth
ϕ =

κ

2
Re [
√
Z ]− κ

2
, (41)

where Z = (1 + i 2χ/κ)2 + i 8χ/κ. Solving for
√
Z, we have

Im[
√
Z ] =

√
−(1− r2) +

√
(1 + r2)2 + 16r2n̄+ 16r2n̄2

2
,

Re[
√
Z ] =

√
(1− r2) +

√
(1 + r2)2 + 16r2n̄+ 16r2n̄2

2
, (42)

where r = 2χ/κ.
In this work, we are focusing on the situation when n̄ is much smaller than 1. Expanding Eq. (42) to first order

in n̄ yields:

Im[
√
Z ] = r +

2r

1 + r2
n̄ ,

Re[
√
Z ] = 1 +

2r2

1 + r2
n̄ . (43)
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Substituting these expressions into Eqs. (41) gives Eqs. (4)-(5) in the main text. In fact, the low-number condition
is r-dependent. The linear approximation is valid when

n̄� (1 + r2)2

16r2

=
1

16
(2 + r2 +

1

r2
) . (44)

Therefore, the condition becomes much looser when the system is in either the strong (r > 1) or weak coupling
(r < 1) regime, meaning that the linear dependence can extend to higher photon number in both cases. The
condition is tightest (n̄�1/4) when r = 1.

Supplementary Note 13 CPMG pulse sequence and filter functions
The Carr-Purcell [21]-Meiboom-Gill [22] (CPMG) is a dynamical decoupling pulse sequence that is the multi-
pulse generalization of the Hahn spin-echo [23]. The CPMG sequence comprises equally spaced π-pulses in
quadrature (with phases 90◦-shifted) with respect to the initial π/2-pulse. The technique reduces dephasing due
to low-frequency noise by a coherent refocusing effect imparted by the π-pulses. The act of applying π-pulses in
the time-domain can be treated in the frequency domain as a band-pass filter that shapes the noise spectra. The
passband of this filter is inversely related to the spacing between adjacent π-pulses.

During free evolution, the decay function due to dephasing is written exp[−ξ(τ)], where ξ(τ) is called the
coherence function and τ is the total free-evolution time. Assuming a Gaussian noise environment, the coherence
function is

ξ(τ) = τ2

∫ ∞
0

dω

2π
Sz(ω)F (ω, τ), (45)

where Sz(ω) is the power spectral density of the longitudinal noise that causes the dephasing, and F (ω, τ) is a
sequence-specific weighting function called the filter function which acts to shape the noise spectrum seen by the
qubit [24]. Assuming infinitely short pulses, the filter function for a CPMG sequence with N (even) π-pulses is
F

(N)
CP (ω, τ) = 4 sinc2(ωτ/2) sin4(ωτ/4N)/ cos2(ωτ/2N). As illustrated in Supplementary Figure 11, this filter

is essentially a bandbpass filter with a passband that peaks around frequency ω/2π = N/2τ , indicating that more
π-pulses will shift the filter to higher frequencies. In addition, the filter bandwidth for a fixed passband becomes
narrower with larger N .

Taking into account the effect from finite duration of π-pulses, the modified filter function has a general form
[25, 26]

F
(N)
CP (ω, τ) =

1

(ωτ)2

∣∣∣1 + (−1)1+N exp(iωτ) + 2

N∑
j=1

(−1)j exp(iωδjτ) cos(ωτπ/2)
∣∣∣2, (46)

where δj ∈ [0, 1] is the normalized position of the center of the jth π-pulse between the two π/2-pulses and τπ is
the length of each π-pulse, yielding a total sequence length τ +Nτπ . For π-pulses of short duration (e.g., τπ = 10
ns) compared with the total free-evolution time (i.e., Nτπ�τ ), as is typical for our experiment, the bandpass filter
frequency still peaks near ω/2π = N/2τ . In practice, we use Eq. (46) to find its precise position.

The photon shot-noise measured in this work has a Lorentzian noise power spectral density centered at zero-
frequency. The spectral density is essentially frequency independent at low frequencies (the “white-noise” region
of the Lorenzian), and it decreases at higher frequencies (the “tail” of the Lorenzian). For small N , such that the
filter passband is in the white-noise region, the dephasing time Tφ does not change with N . For large enough N ,
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such that the filter passband reaches the Lorentzian tail region, the noise power contributing to the coherence inte-
gral in Eq. (45) is reduced. For such large N , the dephasing time Tφ increases as N increases. Since the transverse
relaxation time is defined (within a Bloch-Redfield picture) by the rates 1/T2 = 1/2T1 + 1/Tφ, increasing N in
this tail region will extend T2 towards the 2T1 limit.

For the qubit described in the main text, T2,CPMG is approximately 40µs for N ≤ 100 and represents a typical
duration τ of the free-evolution. Furthermore, as seen in Fig. 6b in the main text, T2,CPMG begins to increase
around N = 100, reaching T2,CPMG = 50µs at N = 200. Taking τ = 50µs and N = 200, the characteristic
frequency is 200/(2×50µs) = 2 MHz, consistent with the -3dB point of the Lorentzian spectrum with bandwidth
κ/2π = 1.5 MHz (see Fig. 6a in the main text). For N > 1000, T2,CPMG saturates at about 85µs, close to the
expected value of 2T1.
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